AKI in Cancer Patients

Amir A. Nassiri, M.D, D.I.U

SBUMS

Tehran 2019

AKI IN SETTING OF OTHER CO-MORBIDITIES

Zeng et al, CJASN 2014

European Journal of Internal Medicine 22 (2011) 399-406

Original article

Incidence of acute kidney injury in cancer patients: A Danish population-based cohort study

Christian Fynbo Christiansen ^{a,*}, Martin Berg Johansen ^a, Wendy J. Langeberg ^b, Jon P. Fryzek ^b, Henrik Toft Sørensen ^a

^a Department of Clinical Epidemiology, the Clinical Institute, Aarhus University Hospital, Olof Palmes Alle 43-45, 8200 Aarhus N, Denmark ^b Center for Observational Research, Amgen, One Amgen Center Drive, Thousand Oaks, CA 91320-1799, USA

Cumulative incidence (risk) of acute kidney injury (AKI) during the first 5 years after a cancer diagnosis

Years since Cancer Diagnosis

Cancers with the highest 1-yr risk of AKI

Acute kidney injury in cancer patients: A nationwide survey in China

Juan Jin^{1,2}, Yafang Wang³, Quanquan Shen^{1,2}, Jianguang Gong^{1,2}, Li Zhao^{1,2} & Qiang He^{1,2}

Cancer patients have a high risk for acute kidney injury (AKI); however, the incidence, severity, and risk factors of malignancy-related AKI (MR-AKI) are unclear. This study aimed to assess MR-AKI risk factors and provide reliable data for AKI prevention, diagnosis, and management in China. This cross-sectional study analysed data from 44 academic and local hospitals in China. AKI patients were identified based on 2 screening criteria: the 2012 Kidney Disease: Improving Global Outcomes-AKI definition and the expanded screening criteria for patients with no repeated serum creatinine (SCr) test within 7 days and those who recovered from AKI. Patients whose SCr level increased or decreased by 50% during hospitalization, compared with that at admission, were considered to have AKI according to the expanded criteria. A total of 7,604 AKI patients were enrolled (1,418 with MR-AKI). Patient characteristics were compared between the MR-AKI and non-MR-AKI groups. Multivariate logistic models were used to statistically assess risk factors. The proportions of MR-AKI patients in academic and local hospitals were 20.2% and 14.1%, respectively. The incidence of MR-AKI was higher in mid-China (the affluent region), elderly patients, and groups with higher per capita gross domestic product. Among MR-AKI cases, gastrointestinal cancer (50.1%) was the most common malignancy, followed by cancers of the reproductive (15.3%), haematological (13.1%), respiratory (11.8%), and other systems (8.3%), and cancers of unknown classification (1.4%). Of 268 hospital deaths, respiratory, haematological, gastrointestinal, reproductive, other system, and unknown classification cancers accounted for 29.3%, 18.8%, 18.6%, 12.9%, 16.9%, and 20.0%, respectively. Increased age, advanced AKI stage at peak, level of per capita gross domestic product, geographic region, and renal replacement therapy indication were risk factors for hospital mortality in patients with gastrointestinal MR-AKI, whereas cardiovascular disease history, AKI stage at peak, and geographic region were risk factors for mortality in patients with reproductive MR-AKI. The incidence and mortality of MR-AKI vary by hospital, economic level, age, geographic region, and malignancy type. High MR-AKI incidence was associated with gastrointestinal cancers and higher level of medical care provided by academic hospitals in affluent regions such as Beijing, Shanghai, and other provincial-level cities. Elderly patients with advanced gastrointestinal cancer in mid-China showed the highest incidence of MR-AKI and in-hospital mortality, and thus require special attention.

AKI is common among cancer patients

- Ontario, Canada: 163,071 patients undergoing cancer therapy between 2007-2014
- One in 10 developed **AKI-D** or required **hospitalization**
- Annual incidence of AKI increased from 18 to 52 per 1000 person years
- Highest AKI incidence with myeloma (26%), bladder cancer (19%), leukemia (15%), and kidney cancer (14%)

Kitchlu A, et al. J Natl Cancer Inst 2018

NIH Public Access Author Manuscript

Cancer. Author manuscript; available in PMC 2014 October 01.

Published in final edited form as: *Cancer*. 2010 September 1; 116(17): 4063–4068. doi:10.1002/cncr.25306.

Predictors and Outcome of Acute Kidney Injury in Patients With Acute Myelogenous Leukemia or High-Risk Myelodysplastic Syndrome

Amit Lahoti, MD¹, Hagop Kantarjian, MD², Abdulla K. Salahudeen, MD¹, Farhad Ravandi, MD², Jorge E. Cortes, MD², Stefan Faderl, MD², Susan O'Brien, MD², William Wierda, MD², and Gloria N. Mattiuzzi, MD²

Kaplan-Meier estimates of patient survival stratified by disease response: (B) no complete remission.

Kaplan-Meier Estimates of 8-Week Mortality by RIFLE Category

	Initial Cr ^a	Maximum Cr ^a	No. of Patients (%)	8-Week Mortality	95% CI
No AKI	0.9	1.0	345 (64)	3.8%	2.2-6.4%
RIFLE–Risk	0.9	1.5	81 (15)	13.6%	7.8–23%
RIFLE–Injury	0.8	1.8	51 (10)	19.6%	11–33%
RIFLE-Failure	0.9	3.0	60 (11)	61.7%	50–74%

AKI in Hospitalized ICU Patients: Solid Tumors

2011-2015

Kemlin D, et al. NDT, 2018

VOLUME 24 · NUMBER 24 · AUGUST 20 2006

JOURNAL OF CLINICAL ONCOLOGY

ORIGINAL REPORT

Prognosis of Critically Ill Patients With Cancer and Acute Renal Dysfunction

Márcio Soares, Jorge I.F. Salluh, Marilia S. Carvalho, Michael Darmon, José R. Rocco, and Nelson Spector

From the Intensive Care Unit, Instituto Nacional de Câncer; Intensive Care

A B S T R A C T

	6-Month Mortality	Hazard			Hazard		
Variables	(%)	Ratio	95% Cl	Р	Ratio	95% Cl	Р
Age, years	70	1.00		100	1.00		
<60	70	1.00	0.05 += 1.44	.463	1.00	1 00 +- 1 04	0.40
>60 Carr	/5	1.11	0.85 to 1.44		1.30	1.00 to 1.84	.048
Fomalo	72	1.00		643			
Male	73	0.94	0.72 to 1.23	.043	_		
Type of cancer	/5	0.04	0.72 (0 1.25				
Locoregional solid tumor	66	1.00		009			
Metastatic solid tumor	75	1.57	1.10 to 2.22		_		
Low-grade hematologic malignancy	84	1.40	0.88 to 2.24		_		
High-grade hematologic malignancy	88	1.65	1.17 to 2.34		_		
Performance status							
0-1	61	1.00		< .001	1.00		
2-4	85	2.05	1.57 to 2.67		1.66	1.22 to 2.26	.00
Cancer status							
Controlled	60	1.00		< .001	1.00		
Uncontrolled newly diagnosed	81	1.81	1.33 to 2.47		1.45	1.00 to 2.11	.049
Uncontrolled recurrence/progression	92	2.43	1.76 to 3.37		1.61	1.10 to 2.11	.01
Veutropenia							
No	71	1.00		< .001			
Yes	89	1.96	1.35 to 2.84		—		
Weight loss							
No	71	1.00		.001	—		
Yes	93	2.05	1.37 to 3.07		—		
Severe comorbidity (ACE-27)							
No	72	1.00		.234	—		
Yes	81	1.31	0.84 to 2.03		—		
Mechanical ventilation							
No	38	1.00		< .001	—		
Yes	83	3.82	2.53 to 5.76		—		
Number of associated organ failures							
0	33	1.00		< .001	1.00		
1	65	2.74	1.58 to 4.75		1.75	0.88 to 3.50	.110
2	80	4.41	2.66 to 7.32		3.24	1.62 to 6.51	< .00
≥ 3	93	6.07	3./4 to 9.8/		4.07	1.94 to 8.54	< .00
Sepsis	50	1.00					
No	53	1.00	1.00 1.0.04	< .001	—		
Yes	85	2.26	1.68 to 3.04		_		
Acute on chronic renal dystunction	74	1.00		062			
NO	74	1.00	0.00 to 1.04	.062	_		
Tes	54	0.49	0.23 10 1.04		—		
	70	1.00		042			
Yes	25	1.00	1 01 to 1 91	.042	_		
Diouria	00	1.55	1.01 (0 1.91				
No	72	1 00		247	—		
Yes	74	1 17	0.90 to 1.53	.247	_		
Classification of acute renal dysfunction	/	1.17	0.00 10 1.00				
Acute renal injury	66	1.00		004	1.00		
Acute renal failure syndrome	80	1 73	1.25 to 2.38	.004	1 77	1 26 to 2 49	001
Severe acute renal failure syndrome	76	1 30	0.95 to 1.78		1.16	0.81 to 1.67	.00
covere acute renarianure synuronne	/0	1.00	0.00 10 1.70		1.10	0.01101.07	.420

Increased Mortality with AKI

Overall AKI Incidence = 12%

Salahudeen A, et al. CJASN 2013

AKI is probably the **most common form** of renal disease for which a **nephrologist would be consulted** in a hospitalized **patient with cancer**.

Prognosis of Cancer pts: Why AKI has a negative impact ?

AKI-related Mortality

Jeopardy of curative options: 1- inconclusive CT Allogenic/Autologus Tx Inadequate doses of Chemottt:1- Underdose: fewer remission2-Overdose: more toxicity

Adaptation of concomitant treatments: Morhines, Abx, Antifungals, ...

AKI + Cancer Epidemiology

- AKI is frequent in pts with cancer (up to 30%)
- AKI strongly worsens the prognosis of cancer pts.
- Prognosis is related to:
- 1- severity of AKI
- 2- number of organ dysfunctions
- 3- cancer progression
- 4- age
- 5- performance status

AKI Increases the risk of progression to ESRD

Hsu et al, CJASN 2009

• AKI in Cancer pts is a multifactorial event

Intrinsic Causes of AKI

- unique/more frequent causes in CA pts:
- Lymphomatous Infiltration of the Kidney
- Cast Nephropathy
- Tumor Lysis Syndrome

Lymphomatous Infiltration of the Kidney (LIK)

Common but under-Dx complication of hematologic malignancies

Tumor Lysis Syndrome

TLS is a medical emergency and a common cause of cancer-induced AKI

Risk Factors for TLS

- highly chem-osensitive malignancies such as lymphomas and leukemias,
- large tumor burden,
- effective cytolytic chemotherapeutic agents,
- elevated lactate dehydrogenase levels (> 1,500 IU), and
- underlying kidney disease

"any tumor"

TLS Burden

- The **in-hospital mortality** associated with TLS can approach **21%**, and nearly <u>70%</u> of patients experience a <u>severe complication</u> such as:
- sepsis,
- dialysis,
- acute respiratory failure,
- mechanical ventilation,
- cardiac arrest, or
- seizures

"the Cairo-Bishop definition"

- While there are no universally accepted diagnostic criteria for TLS, the Cairo-Bishop definition of <u>both</u> <u>laboratory and (+) clinical criteria</u> are commonly utilized [93].
- Laboratory criteria include the following:
 - 1- hyperuricemia (> 8 mg/dL or a 25% increase from base- line),
 - 2- hyperkalemia (> 6 mmol/L or 25% increase from baseline),
 - 3- hyperphosphatemia (> 4.5 mg/dL or 25% in- crease from baseline) and
 - 4- hypocalcemia (< 7 mg/dL or a 25% decrease from baseline).
- Laboratory criteria for TLS require the presence of <u>2 or more</u> of these abnormalities occurring <u>3 days before</u> or 7 days after therapy.
- Clinical criteria include:
 - 1- serum creatinine elevation > 1.5 times the upper limit of normal,
 - 2- cardiac arrhythmias,
 - 3- sudden death, and
 - 4-seizures

Laboratory & Clinical TLS "Cairo & Bishop"

Laboratory TLS	Clinical TLS		
(Requires ≥ 2 laboratory abnormalities)	(Requires laboratory TLS features plus any clinical finding below)		
Hyperuricemia (uric acid ≥8 mg/dl)	AKI≥		
Hyperphosphatemia (>4.5 mg/dl in adults; >6.5 mg/dl in children)	Stage I (AKIN criteria)≥ R (RIFLE criteria)		
Hyperkalemia (potassium >6.0 mEq/L)	Cardiac dysrhythmia, sudden death		
Hypocalcemia (corrected serum calcium <7.0 mg/dl, or ionized calcium <1.12 mg/dl)	Cardiac dysrhythmia, sudden death, seizure, tetany, carpopedal spasm, bronchospasm, laryngospasm, hypotension		

Clinical TLS

	0	1	2	3	4	5
Creatinine	< 1.5x	1.5 - 3 x	1.5 - 3 x	3 - 6 x	> 6 x	Death
Arrthymias	No	Intervention not indicated	Intervention indicated	Symptomatic, urgent action.	Life- threatening	Death
Seizures	No	-	Single, easily controlled	Repeated, altered consciousness	Prolonged, refractory	Death

Cairo-Bishop: Clinical grading of tumour lysis syndrome.

Variable	Grade 0	Grade I	Grade II	Grade III	Grade IV	Grade V
Creatinine	None	1.5 times upper limits of normal (ULN)	>1.5-3.0 times ULN	>3.0-6.0 times ULN	>6.0 times ULN	Death
Cardiac arrhythmia	None	Intervention not indicated	Nonurgent medical intervention indicated	Symptomatic and incompletely controlled medically or controlled with device (e.g., defibrillator)	Life-threatening (e.g., arrhythmia associated with HF, hypotension, syncope, shock)	Death
Seizures	None	_	One brief, generalized seizure; seizure(s) well controlled by anticonvulsants or infrequent focal motor seizures not interfering with ADL	Seizure in which consciousness is altered; poorly controlled seizure disorder; with breakthrough generalized seizures despite medical intervention	Seizure of any kind which are prolonged, repetitive or difficult to control (e.g., status epilepticus, intractable epilepsy)	Death

Prophylaxis against TLS is recommended for all patients with hematological malignancies undergoing chemotherapy
Prophylaxis is also recommended for all high and moderate risk patients such as those with large tumor burdens, reduced GFR, and highly chemosensitive tumors

- Febuxostat is a non-purine analogue xanthine oxidase inhibitor and is useful in patients that are intolerant to allopurinol.
- Trials demonstrated that febuxostat was <u>superior in lowering uric acid</u> <u>levels</u> but there was <u>no difference</u> in clinical outcomes <u>vs. allopurinol</u>
- Febuxostat dosing should be 40 mg daily in patients with severe kidney function impairment.

Randomized trials of Rasburicase

Study	Year	Patients (n)	Population	Group 1	Group 2	End Point
Cortes et al. (61) ^a	2010	183	Adults at risk for TLS	Rasburicase, 0.20 mg/kg per d for 5 d	Allopurinol, 300 mg/d for 5 d	Uric acid <7.5 mg/dl at 3–7 d
Malaguarnera et al. (68)	2009	38	Hyperuricemic elderly patients	Rasburicase, 4.5 mg for 1 dose	Placebo	Change in uric acid at 1 wk
Kikuchi et al. (92)	2009	30	Japanese children at risk for TLS	Rasburicase, 0.20 mg/kg per d for 5 d	Rasburicase, 0.15 mg/kg per d for 5 d	Sustained reduction in uric acid to $<6.5 \text{ mg/dl}$ (age $<13 \text{ yr}$) or $<7.5 \text{ mg/dl}$ (age $\ge13 \text{ yr}$)
Ishizawa et al. (93)	2009	50	Japanese adults at risk for TLS	Rasburicase, 0.20 mg/kg per d for 5 d	Rasburicase, 0.15 mg/kg per d for 5 d	Sustained reduction of uric acid <7.5 mg/dl
Goldman et al. (77)	2001	52	Children at risk for TLS	Rasburicase, 0.20 mg/kg per d for 5–7 d	Allopurinol, 300 mg every 8 h for 5–7 d	Area under the uric acid curve over 5 d

Wilson and Berns CJASN 2012

The <u>need for hemodialysis</u> to treat TLS has likely <u>declined</u> since the advent of *rasburicase*

RRT & TLS

- Hemodialysis remains a highly effective therapy that can be used to gain control of electrolyte and acid-base issues, especially in the presence of oliguric AKI.
- Continuous renal replacement therapies can be utilized in the treatment of TLS and have the advantage of avoiding <u>"rebound"</u> <u>metabolic disturbances</u>.
- If a continuous renal replacement is utilized, **higher clearance levels** (at least **30-40** mL/kg/ hour) should be targeted.

Hypercalcemia-Induced AKI

Hypercalcemia occurs in approximately 20% to 30% of all malignancies (especially, multiple myeloma and squamous cell carcinomas) and is a common cause of AKI

- In some scenarios, such as with multiple myeloma, the presence of hypercalcemia <u>may potentiate other AKI etiologies</u>
- Hypercalcemia promotes <u>direct afferent arteriolar vasoconstriction</u> and also leads to <u>volume depletion</u> from <u>excessive renal sodium and</u> <u>water loss</u>

Table 1. Types of Hypercalcemia Associated with Cancer.*								
Туре	Frequency	Bone Metastases	Causal Agent	Typical Tumors				
	(%)							
Local osteolytic hypercalcemia	20	Common, extensive	Cytokines, chemo- kines, PTHrP	Breast cancer, multiple myeloma, lymphoma				
Humoral hypercalcemia of malignancy	80	Minimal or absent	PTHrP	Squamous-cell cancer, (e.g., of head and neck, esophagus, cervix, or lung), renal cancer, ovarian cancer, endometrial cancer, HTLV- associated lymphoma, breast cancer				
1,25(OH)₂D-secreting lymphomas	<1	Variable	1,25(OH) ₂ D	Lymphoma (all types)				
Ectopic hyperparathyroidisn	n <l< td=""><td>Variable</td><td>РТН</td><td>Variable</td></l<>	Variable	РТН	Variable				

- Hypercalcemia causes sodium wasting at the loop of Henle by activating the calcium-sensing receptor,
- and also leads to renal water losses by blocking arginine vasopressin activity in the distal nephrons
- Rosner MH, Perazella MA. Acute kidney injury in patients with cancer. N Engl J Med 2017;376:1770-1781.

THIS HUMAN MONOCLONALANTIBODY IS EFFECTIVE IN THE TREATMENT OF HYPERCALCEMIA OF MALIGNANCY.

CORRESPONDENCE

RE: Denosumab for Patients With Persistent or Relapsed Hypercalcemia of Malignancy Despite Recent Bisphosphonate Treatment

Jason Adhikaree, Yvette Newby, Santhanam Sundar

. A) Adjusted Calcium mmol/L post-denosumab treatment. B) Creatinine umol/L post-denosumab treatment.

Drug-Induced AKI

• chemotherapy-associated AKI can be separated into 3 drug classes:

1) conventional chemotherapy,

2) targeted therapies, and

3) novel immunotherapies

Conven2onal Chemotherapeu2c Agents

• Gemcitabine, Mitcomycin C, Cispla2n- TMA

• Pamidronate-

Methotrexate-

Collapsing FSGS

Crystalline ATI

• Pla2ns, Ifosfamide, Pemetrexed, Zoledronate- Toxic ATI/ATN

Target Agents

very successful in effectively treating cancer, but unfortunately are also associated with AKI, proteinuria, hypertension, and electrolyte disturbances

Targeted An2-Cancer Agents

Cancer Immunotherapies

Prerenal AKI, ATN, **PI-GN**

Interferon–

FSGS / TMA

AIN/IC-GN/MCD **Txp rejection**

• CAR T-Cells-

Prerenal AKI/ATI, TLS, electrolyte disorders

VEGF & Proteinuria

VEGF & Proteinuria

AKI after HCT

Table 1. Selected studies from the last decade in critically ill patients with HM and AKI								
References	Patients with HM	Design and setting	ВМТ / НЅСТ	RRT	Survival	Main findings		
Lengline <i>et al.</i> 2015 [24]	123	Retrospective, multicenter	Allogenic, 100%	57 (46%)	Hospital, 52%	The use of RRT was independently associated with 90-day mortality. 95% of the patients managed with RRT died after a median <2 weeks.		
	40			0 ((0))	3 months, 49%	the state of the s		
Canet <i>et al.</i> 2014 [9]	49	Ketrospective, single center	Allogenic, 100%	3 (6%)	Hospital, 53%	Mortality was associated with the severity of AKI, GVHD and VOD. No surviving patients recovered previous renal function at 3-months of follow-up.		
					3 months, 35%			
Canet <i>et al.</i> 2013 [2]	137	Prospective, single center	None	72 (53%)	Hospital, 65%	AKI was associated with lower rates of complete remission. Renal recovery occurred in 92% among hospital survivors.		
					6 months, 53%			
Azoulay <i>et al.</i> 2013 [25]	204 (out of 1032 patients with HM)	Prospective, multicenter	252 (25%) (allogenic = 145; autologous =107)	262 (26%)	Hospital, 59%	Patients treated with RRT had a hospital mortality of 59%, but among those without any other organ failure than AKI, 81% were alive at hospital discharge		
Park <i>et al.</i> 2011 [26]	94	Retrospective, single center	21 (22%) (allogenic = 12; autologous = 9)	100%	ICU, 23%	Nonrenal organ dysfunctions were associated with ICU mortality.		
Darmon <i>et al.</i> 2007 [7]	87 (out of 94 patients with cancer)	Prospective, single center	None	100%	Hospital, 48%	The severity of associated organ failures and renal function deterioration after ICU admission were associated with worse outcomes. Mortality was comparable to noncancer patients.		
Soares <i>et al.</i> 2006 [3]	76 (out of 309 patients with cancer)	Prospective, single center	None	34 (45%)	Hospital, 24%	Older age, uncontrolled cancer, impaired performance status and associated organ failures were associated with increased 6-month mortality. Renal function was completely reestablished in 82%.		
					6 months, 13%			
Benoit <i>et al.</i> 2005 [21]	49 (out of 270 patients with cancer)	Retrospective, single center	None	42 (86%)	ICU, 20%	Hematological patients had higher rate of AKI treated with RRT and mortality than other patients. However, hematological malignancy was not independently associated with death.		
					Hospital, 16%			

AKI, acute kidney injury; BMT, bone marrow transplant; GVHD, graft versus host disease; HM, hematological malignancies; HSCT, hematopoietic stem-cell transplant; ICU, intensive care unit; VOD, veno-occlusive disease.

The original report by Zager et al., which analyzed 272 patients undergoing myeloablative HCT (89% allogeneic and 11% autologous), found that 53% of patients developed AKI (defined as doubling of serum creatinine), with one-half of these patients requiring dialysis.

• This remarkably high incidence of AKI in <u>myeloablative & allogeneic</u> HCT has been confirmed in several more recent studies • Overall **mortality** rates in patients with **AKI** range from **37% to 46%** and are as high as 88% in patients requiring dialysis

AKI after HCT

Early onset (<30 days) Sepsis Hypotension Hypovolemia (vomiting and diarrhea) Nephrotoxic agents Acyclovir Allopurinol Amphotericin B Angiotensin-converting enzyme inhibitors Angiotensin receptor blockers Calcineurin inhibitors Contrast dye Methotrexate **NSAIDs** Tumor lysis syndrome Hepatic sinusoidal obstruction syndrome Late onset (>3 months) Thrombotic microangiopathy Calcineurin inhibitor toxicity

- Hepatic sinusoidal obstruction syndrome (SOS), previously known as <u>veno-occlusive disease</u>, is the constellation of:
 - 1- tender hepatomegaly,
 - 2- fluid retention,
 - 3- weight gain, and
 - 4- jaundice
- that occurs after the administration of high-dose conditioning regimens, including cyclophosphamide, busulfan, and/or total body irradiation

 Although SOS has historically been reported in 5%–60% of patients, a recent review of studies performed between 1979 and 2007 found that the overall mean <u>incidence of SOS was 13.7%</u>

• SOS occurs more commonly after **myeloablative allogeneic** HCT than after autologous HCT ,

- and it is essentially <u>nonexistent</u> with <u>nonmyeloablative</u> regimens.
- **Risk factors** for developing SOS include:

1- older age,

2- pre-existing liver disease,

3- medications (methotrexate, itraconazole, sirolimus, and norethisterone), and

4- certain conditioning agents (cyclophosphamide and busulfan)
AKI develops in approximately 50% of patients with SOS and is clinically indistinguishable from the hepatorenal syndrome

Rx of SOS

- More than 70% patients with SOS will recover spontaneously with <u>only</u> <u>supportive therapy</u>, which consists of maintaining sodium and water balance, preserving renal blood flow, and treating symptomatic <u>ascites</u> with <u>repeated paracenteses</u>.
- For patients with **severe SOS**, there are **no highly effective treatments**, although the best results have been achieved with defibrotide, a singlestranded oligodeoxyribonucleotide with antithrombotic and profibrinolytic properties that has a 46% complete response rate.
- Infusion of heparin and/or ursodeoxycholic acid administered immediately before induction therapy may also be moderately successful as preventive measures.

TMA

Previously known as *"bone marrow transplant nephropathy"* or *"radiation nephropathy"*

Thrombotic Microangiopathy

- Thrombotic microangiopathy (TMA) is a common cause of late-onset AKI in patients who have undergone HCT.
- TMA in cancer patients can be classified as:
 - 1- cancer-related TMA,

•

- 2- cancer drugs-induced TMA (types I and II), and
- **3-HSCT-related TMA**

TMA is a potentially severe kidney lesion with untoward outcomes that can complicate certain malignancies and a number of cancer therapies

- Cancer-related TMA mainly occurs in patients with
- solid tumors, most commonly in adenocarcinomas.

 Thrombocytopenia with micro-angiopathic hemolytic anemia and no alternative diagnosis is sufficient to establish a presumptive diagnosis of TMA

- The pathogenesis of TMA after HCT is not well understood, but damage to renal endothelial cells likely plays a central role
- The <u>conditioning regimen</u>, particularly the use of total body irradiation, is a primary cause of renal endothelial damage, with <u>post-HCT factors</u> such as GVHD, infections, and medications (such as the calcineurin inhibitors) playing a later modulatory role
- Strategies such as partial shielding of the kidneys, hyperfractionation of the radiation dose, and slow radiation administration have been proposed to reduce radiation injury.
- these approaches run the <u>risk of decreasing the effectiveness of</u> <u>tumor cell eradication.</u>

Rx of HCT- associated TMA

- The **management** of HCT- associated TMA is otherwise largely supportive.
- Calcineurin inhibitors are typically discontinued,
- Other oral agents that can be used for the <u>prevention and treatment</u> of GVHD include **mycophenolate mofetil and corticosteroids**.
- Substitution of calcineurin inhibitors with daclizumab,
- Rituximab

the incidence of **drug-induced** TMA is >15%, primarily due to the introduction **of VEGF agents**.

	Chemotherapy regimen	Anti-VEGF therapy
Characteristic agent	Mitomycin C and/or gemcitabine	Bevacizumab
Onset	Delayed; usually 6-12 mo after starting therapy	Occurs any time after the initiation of treatment and may be involved after prolonged treatment (1 dose to 29 mo)
Dose effect	Cumulative, dose related	Not dose related
Clinical	Appears to be permanent and irreversible; hematologic manifestations usually present; hypertension, acute renal failure, pulmonary edema, and ARDS are common	High likelihood of recovery after interruption (reversible); hematologic manifestations only in half of pts; hypertension, and varying degrees of proteinuria usually without kidney failure
Effect of rechallenge	High probability of recurrent dysfunction that is progressive; may result in intractable kidney failure	Some evidence for the relative safety of rechallenge (additional data needed)
Pathologic	Arteriolar and glomerular capillary thrombosis	Exclusive glomerular capillary thrombosis
Therapy and prognosis	High incidence of acute mortality (4-month mortality up to 75%) and chronic kidney disease requiring dialysis despite drug discontinuation, steroids, or plasma exchange before rituximab and eculizumab use	Patient and kidney survival rates are excellent after stopping drug in association with antihypertensive drugs

	Case n	Malignancy	Regimen Inducing TMA	ADAMST13 Level	Prior TMA Therapy	Doses Given	Outcome
Rituximab (375 mg/m ² /wk)	4	Breast, pancreas, lung	MMC- or Gem- based; other: Platins, BVZ	≥38%	Steroids + daily plasma exchange (n, 8->120)	2-8	TMA resolution in 3 cases (2 pts at 5 mo and 1 pt continued to require 3×/wk hemodialysis at 4 mo)
Eculizumab (900 mg)	1	Duodenal	Gem	88%	Steroids + daily plasma exchange (n = 12), then rituximab (375 mg/ m ² /wk, 2 doses)	4	Rapid normalization of platelet count, improvement of kidney function, and independence from hemodialvsis
Recombinant human soluble thrombomodulin (rTM, 380 U/kg/d)	1	Lung	Gem + BVZ	61%	Concomitant fresh frozen plasma (4 units/d)	6	Patient recovered from TTP and was discharged 1 mo after the onset of TTP-1 year

Table 3. Emerging Therapies for Cancer Drug–Induced TMA ¹²¹⁻	1-123;126,133
---	---------------

Abbreviations: BVZ, bevacizumab; Gem, gemcitabine; MMC, mitomycin C; pt, patient; TMA, thrombotic microangiopathy; TTP, thrombotic thrombocytopenic purpura.

 Patients with multiple myeloma represent an important subclass of patients with hematological malignancies that are prone to develop AKI. AKI is quite common, complicating the course of myeloma
in up to 20% to 50% of cases

Etiologies of AKI in MM

Paraprotein-related	Metabolic disturbances
Light chain cast nephropathy	Hypercalcemia secondary
Light chain related proximal tubular	to bone involvement
injury with or without Fanconi syndrome	Hyperuricemia with large
Light chain deposition disease	tumor burden
Amyloidosis (more common with	
lambda light chains)	

PROXIMAL TUBULE

DISTAL TUBULE

Indications for Plasma-pheresis

Disease (ASFA* Category)	
TTP/HUS (I)	Thrombotic Thrombocytopenic Purpura – Hemolytic Uremic Syndrome. Thrombocytopenia, hemolytic anemia, neurologic symptoms. Substitution of FFP is therapeutic desired.
Goodpasture Syndrome (I)	Rapid progressive glomerulonephritis and lungs bleeding. Prognostic important early indication to plasmapheresis in combination with Immunsuppressive therapy.
Guillain-Barré-Syndrome (I)	Acute inflammatory attack of myelin sheat in peripheral nerves and spinal ganglions through IgG-Antibodies and immuno-complexes. Ascending paralysis of extremities and trunk up to respiratory paralysis.
Myasthenia Gravis (I)	IgG-Autoantibodies against Acetylcholin rezeptors of skeletal muscles. Neuro-muscular symptoms. Myasthenic crises with respiratory paralysis.
Hyperviscosity Syndrome (I)	High blood viscosity e.g. in M. Waldenström, Myeloma, Cryoglobulinemia. Neurologic and hematologic disturbances, organ damage.
Cryoglobulinemia (I)	Immunglobulin complexis which precipitate in coldness. Skin bleeding closed to fingers and toes, articulation pain, glomerulonephritis.
Renal Transplantation (I)	In acute antibody-mediated rejection to remove anti-HLA antibodies. Also in desensitization for ABO-incompatible and hypersensitized patients before transplantation.
SLE (II)	Systemic Lupus Erythematodes. Autoimmuno desease of skin and vessels with deposition of immuno-complexes composed by DNA and DNA-Antibodies.
Multiple Myeloma (II)	Plasmacytoma. Plasma cell carcinoma which produce abnormal antibodies in bone marrow. The pathologic antibodies cause casts in Kidney. Changes in marrow cause bone damage and hypercalcemia.
Multiple Sclerosis (II)	Type of inflammation of CNS (inflammatory demyeliting disease) in which myelin sheath of brain and spine are damaged. Course of the disease can differ very much with wide range of neurologic symptoms.
Poisoning, Overdose (II)	Mushrooms, snakebite, cisplatin, digoxin

*ASFA = American Society for Apheresis

Controlled plasma exchange trial in acute renal failure due to multiple myeloma

PIETRO ZUCCHELLI, SONIA PASQUALI, LEONARDO CAGNOLI, and GIUSEPPE FERRARI

Department of Nephrology, Malpighi Hospital, U.S.L. 28 Bologna North, Bologna, Italy

Controlled plasma exchange trial in acute renal failure due to multiple myeloma. We studied 29 patients affected by acute renal failure due to multiple myeloma with Bence-Jones proteinuria > 1 g/day to evaluate the effectiveness of plasma exchange in the treatment of severe myeloma nephropathy. Renal failure was severe enough to require dialysis in 24 cases, while the remaining 5 patients showed serum creatinine levels greater than 5 mg/dl. The patients were randomly allocated to Group 1 (15 patients undergoing plasma exchange together with corticosteroids, cytotoxic drug, hemodialysis only when needed) or to Group II (14 patients undergoing peritoneal dialysis together with corticosteroids and cytotoxic drug). In Group I Bence-Jones proteinuria decreased dramatically (P < 0.01) with a significant increase in urine output (P < 0.01) 0.001), while Group II presented a slight reduction in Bence-Jones proteinuria without a significant increase in daily diuresis. Thirteen out the 15 Group I patients recovered renal function reaching serum creatinine levels ≤ 2.5 mg/dl in most cases. Only two patients in Group II improved renal failure well enough to stop dialysis. The one-year survival rate was significantly higher in Group I (66%) than in Group II (28%, P < 0.01). We conclude that plasma exchange associated to chemotherapy rapidly removes large amounts of light chains, improves both renal function and long-term survival expectancies.

Annals of Internal Medicine

Article

Plasma Exchange When Myeloma Presents as Acute Renal Failure

A Randomized, Controlled Trial

William F. Clark, MD; A. Keith Stewart, MD; Gail A. Rock, MD; Marion Sternbach, MD; David M. Sutton, MD; Brendan J. Barrett, MD; A. Paul Heidenheim, MA; Amit X. Garg, MD; David N. Churchill, MD; and the Canadian Apheresis Group

Background: Two small, randomized trials provide conflicting evidence about the benefits of plasma exchange for patients with acute renal failure at the onset of multiple myeloma.

Objective: To assess the effect of 5 to 7 plasma exchanges on a composite outcome in patients with acute renal failure at the onset of multiple myeloma.

Design: Randomized, open, controlled trial, stratified by chemotherapy and dialysis dependence, conducted from 1998 to 2004.

Setting: Hospital plasma exchange units in 14 Canadian medical centers.

Participants: 104 patients between 18 and 81 years of age with acute renal failure at the onset of myeloma.

Intervention: Study participants were randomly assigned to conventional therapy plus 5 to 7 plasma exchanges of 50 mL per kg of body weight of 5% human serum albumin for 10 days or conventional therapy alone. Ninety-seven participants completed the 6-month follow-up.

Measurements: The primary outcome was a composite measure of death, dialysis dependence, or glomerular filtration rate less than 0.29 mL \cdot s⁻² \cdot m⁻² (<30 mL/min per 1.73 m²).

Results: At enrollment, the plasma exchange and control groups were similar for dialysis dependence, chemotherapy, sex, age, hypercalcemia, serum albumin level, 24-hour urine protein level, serum creatinine level, and Durie–Salmon staging. The primary composite end point occurred in 33 of 57 (57.9%) patients in the plasma exchange group and in 27 of 39 (69.2%) patients in the control group (difference between groups, 11.3% [95% Cl, -8.3% to 29.1%]; P = 0.36). One third of patients in each group died.

Limitations: The study was small, used a composite outcome, and did not use renal biopsy as an inclusion criterion. Recruiting physicians were blinded to treatment allocation but not to treatment thereafter.

Conclusions: In patients with acute renal failure at the onset of multiple myeloma, there is no conclusive evidence that 5 to 7 plasma exchanges substantially reduce a composite outcome of death, dialysis dependence, or glomerular filtration rate less than 0.29 mL \cdot s⁻² \cdot m⁻² (<30 mL/min per 1.73 m²) at 6 months.

Ann Intern Med. 2005;143:777-784. For author affiliations, see end of text. ClinicalTrials.gov identifier: NCT00120263. www.annals.org

No difference on M&M's

Role of plasmapheresis in the management of myeloma kidney: A systematic review

Diptesh GUPTA,¹ Lohith BACHEGOWDA,² Gautam PHADKE,^{1,3} Sue BOREN,^{4,5} Diane JOHNSON,⁶ Madhukar MISRA,^{1,3}

¹Department of Internal Medicine, School of Medicine, University of Missouri, Columbia, Missouri, USA;
 ²Department of Internal Medicine, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA;
 ³Division of Nephrology; ⁴Department of Health Management and Informatics; ⁵Center for Health Care Quality, School of Medicine; ⁶Information Services, J. Otto Lottes Health Sciences Library, University of Missouri, Columbia, Missouri, USA;

Abstract

Multiple myeloma complicated by acute renal failure is a diagnosis often encountered by the practicing nephrologist. The role of plasmapheresis in such patients has been of interest for decades. Three randomized controlled trials (RCTs) and multiple observational trials have evaluated the potential role of plasmapheresis in the management of this condition. This systematic review presents the results of these trials regarding survival benefits, recovery from dialysis, and improvement in renal function. A comprehensive search revealed 56 articles. Of these, only 8 articles met our inclusion criteria (3 RCTs, 1 correction of results, and 4 observational trials). Two of the 3 RCTs showed no difference in survival benefit. Two of the 3 RCTs showed a greater percentage of patients stopping dialysis in the intervention group; however, these results were not reproduced in the largest trial. All the studies showed an improvement in renal function for patients receiving plasmapheresis; however, only 2 RCTs and 1 retrospective study showed a statistically significant improvement in renal function among patients who received plasmapheresis in comparison with a

control group. Our systematic review does not suggest a benefit of plasmapheresis independent of chemotherapy for multiple myeloma patients with acute renal failure in terms of overall survival, recovery from dialysis, or improvement in renal function.

Rebound of FLC

Sieving Coefficient

Sieving Coefficient

http://www.revistanefrologia.com

© 2012 Revista Nefrología. Official Publication of the Spanish Nephrology Society

See editorial comment on page 15 Haemodialysis using high cut-off dialysers for treating acute renal failure in multiple myeloma

Guillermo Martín-Reyes¹, Remedios Toledo-Rojas¹, Álvaro Torres-Rueda¹, Eugenia Sola-Moyano¹, Lourdes Blanca-Martos¹, Laura Fuentes-Sánchez¹, M. Dolores Martínez-Esteban¹, M. José Díez-de los Ríos², Alicia Bailén-García³, Miguel González-Molina¹, Isabel García-González⁴

originals

¹ Servicio de Nefrología. Hospital Regional Universitario Carlos Haya. Málaga. Spain

² Laboratorio de Análisis Clínicos. Hospital Regional Universitario Carlos Haya. Málaga. Spain

³ Servicio de Hematología. Hospital Regional Universitario Carlos Haya. Málaga. Spain

⁴ Servicio de Anatomía Patológica. Hospital Regional Universitario Carlos Haya. Málaga. Spain

Effective chemo-therapy regimens include proteasome inhibitors such as bortezomib along with other agents such as thalidomide, corticosteroids, vincristine, and adriamycin in various combinations

 Bortezomib has the added benefit of acting quickly to improve glomerular filtration rate (GFR) with a median time of response at 1.34 months Should Dialysis be offered to cancer pts with severe AKI ?

• AKI + Cancer = mortality & morbidity +++

• AKI + Cancer requiring RRT >>> not uncommon in ICU

• AKI + Cancer + RRT = very high mortality (up to 85% in HCT)

Intensive Care Med (2007) 33:765–772 DOI 10.1007/s00134-007-0579-1

ORIGINAL

Michael Darmon Guillaume Thiery Magali Ciroldi Raphaël Porcher Benoît Schlemmer Élie Azoulay Should dialysis be offered to cancer patients with acute kidney injury?

In selected cancer populations, full ICU management (RRT) leads to meaningful survival

Take Home Messages

- AKI + Cancer = frequent complications
- AKI + Cancer = increased M&M's
- AKI + Cancer = increased LOS
- AKI + Cancer = interruptions in cancer ttt / complicates the management of cancer pts.
- AKI in Cancer >>> usual causes & specific causes (mostly multifactorial)
- Prognosis >>> related to number of organs dysfunctions
- Do not deprive RRT to a cancer pt just because he/she has cancer !

MERCI